A semi-supervised regression model for mixed numerical and categorical variables
نویسندگان
چکیده
منابع مشابه
A semi-supervised regression model for mixed numerical and categorical variables
In this paper, we develop a semi-supervised regression algorithm to analyze data sets which contain both categorical and numerical attributes. This algorithm partitions the data sets into several clusters and at the same time fits a multivariate regression model to each cluster. This framework allows one to incorporate both multivariate regression models for numerical variables (supervised lear...
متن کاملSemi Supervised Logistic Regression
Semi-supervised learning has recently emerged as a new paradigm in the machine learning community. It aims at exploiting simultaneously labeled and unlabeled data for classification. We introduce here a new semi-supervised algorithm. Its originality is that it relies on a discriminative approach to semisupervised learning rather than a generative approach, as it is usually the case. We present ...
متن کاملSemi-supervised incremental clustering of categorical data
Résumé. Le clustering semi-supervisé combine l’apprentissage supervisé and non-supervisé pour produire meilleurs clusterings. Dans la phase initiale supervisée de l’algorithme, un échantillon d’apprentissage est produit par selection aléatoire. On suppose que les exemples de l’échantillon d’apprentissage sont étiquetés par un attribut de classe. Puis, un algorithme incrémentiel développé pour l...
متن کاملSemi-Supervised Multi-Task Regression
Labeled data are needed for many machine learning applications but the amount available in some applications is scarce. Semi-supervised learning and multi-task learning are two of the approaches that have been proposed to alleviate this problem. In this paper, we seek to integrate these two approaches for regression applications. We first propose a new supervised multi-task regression method ca...
متن کاملLearning Safe Prediction for Semi-Supervised Regression
Semi-supervised learning (SSL) concerns how to improve performance via the usage of unlabeled data. Recent studies indicate that the usage of unlabeled data might even deteriorate performance. Although some proposals have been developed to alleviate such a fundamental challenge for semisupervised classification, the efforts on semi-supervised regression (SSR) remain to be limited. In this work ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2007
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2006.06.018